Development & application of an integrated population model for Chinook salmon Mark Scheuerell NOAA Northwest Fisheries Science Center J. Tyrell Deweber Oregon State University Tom Friesen Oregon Department of Fish and Wildlife ## Acknowledgments #### **Model development** Eric Buhle (NMFS) Jim Thorson (NMFS) #### **Willamette insights** Stephanie Burchfield (NMFS) Diana Dishman (NMFS) Anne Mullan (NMFS) Jim Peterson (OSU) Rich Piaskowski (USACE) ## THE CLASSICAL APPROACH | Year | Returns | Recruits | Age a | Age <i>a</i> +1 | Age <i>a</i> +2 | |------|---------|----------|-------|-----------------|-----------------| | У | S_y | | | | | | Year | Returns | Recruits | Age 3 | Age 4 | Age 5 | |------|-----------------------|----------|------------------|------------------|------------------| | 1 | S_1 | | N _{1,3} | N _{1,4} | N _{1,5} | | 2 | S_2 | | N _{2,3} | N _{2,4} | N _{2,5} | | 3 | <i>S</i> ₃ | | N _{3,3} | N _{3,4} | N _{3,5} | | 4 | S_4 | | N _{4,3} | $N_{4,4}$ | N _{4,5} | | 5 | S ₅ | | N _{5,3} | N _{5,4} | N _{5,5} | | 6 | S_6 | | N _{6,3} | N _{6,4} | N _{6,5} | | 7 | S ₇ | | N _{7,3} | N _{7,4} | N _{7,5} | | 8 | S ₈ | | N _{8,3} | N _{8,4} | N _{8,5} | | Year | Returns | Recruits | Age 3 | Age 4 | Age 5 | |------|-----------------------|----------|------------------|------------------|------------------| | 1 | S_1 | R_1 | N _{1,3} | N _{1,4} | N _{1,5} | | 2 | S_2 | | N _{2,3} | N _{2,4} | N _{2,5} | | 3 | <i>S</i> ₃ | | N _{3,3} | N _{3,4} | N _{3,5} | | 4 | S_4 | | N _{4,3} | $N_{4,4}$ | N _{4,5} | | 5 | S ₅ | | N _{5,3} | N _{5,4} | N _{5,5} | | 6 | S_6 | | N _{6,3} | N _{6,4} | N _{6,5} | | 7 | S ₇ | | N _{7,3} | N _{7,4} | N _{7,5} | | 8 | S ₈ | | N _{8,3} | N _{8,4} | N _{8,5} | $$R_y = \sum_{a=3}^5 N_{y+a,a}$$ | Year | Returns | Recruits | Age 3 | Age 4 | Age 5 | |------|-----------------|-----------------|-------------------|-------------------|-------------------| | 21 | S ₂₁ | R ₂₁ | N _{21,3} | N _{21,4} | N _{21,5} | | 22 | S ₂₂ | R_{22} | N _{22,3} | N _{22,4} | N _{22,5} | | 23 | S ₂₃ | R ₂₃ | N _{23,3} | N _{23,4} | N _{23,5} | | 24 | S ₂₄ | R_{24} | N _{24,3} | N _{24,4} | N _{24,5} | | 25 | S ₂₅ | R ₂₅ | N _{25,3} | N _{25,4} | N _{25,5} | | 26 | S ₂₆ | | N _{26,3} | N _{26,4} | N _{26,5} | | 27 | S ₂₇ | | N _{27,3} | N _{27,4} | N _{27,5} | | 28 | S ₂₈ | | N _{28,3} | N _{28,4} | N _{28,5} | | Year | Returns | Recruits | Age 3 | Age 4 | Age 5 | |--------------|-----------------------|----------|-------------------------|------------------|-------------------------| | 1 | S_1 | R_1 | N _{1,3} | N _{1,4} | N _{1,5} | | 2 | S_2 | R_2 | N _{2,3} | N _{2,4} | N _{2,5} | | 3 | S ₃ | R_3 | N _{3,3} | N _{3,4} | N _{3,5} | | 4 | S ₄ | R_4 | N _{4,3} | $N_{4,4}$ | N _{4,5} | | 5 | S ₅ | R_5 | N _{5,3} | N _{5,4} | N _{5,5} | | 6 | <i>S</i> ₆ | R_6 | N _{6,3} | N _{6,4} | N _{6,5} | | \Downarrow | ₩ | ₩ | \Downarrow | \Downarrow | \Downarrow | | t | S_t | R_t | N _{t,3} | $N_{t,4}$ | $N_{t,5}$ | Stock-recruit model ## Problems with this approach 1. Spawners often based on redd- or weir-count expansions #### Covariate measured with error | Year | Returns | Recruits | Age a | Age <i>a</i> +1 | Age <i>a</i> +2 | |------|---------|----------|-------|-----------------|-----------------| | y | S_{y} | | | | | $$\ln\left(\frac{R_y}{S_y}\right) = \ln a - \log x + e_y$$ Our predictor variable is measured with error! ## Problems with this approach - 1. Spawners often based on redd- or weir-count expansions - 2. Age-composition data are typically non-exhaustive and therefore imprecise ## Typical age expansion # fish sampled for age comp << total return! ## Problems with this approach - 1. Spawners often based on redd- or weir-count expansions - 2. Age-composition data are typically non-exhaustive and therefore imprecise - 3. Missing data cause problems # Problems with missing data | Year | Returns | Recruits | Age 3 | Age 4 | Age 5 | |------|-----------------|----------|-------------------|-------------------|-------------------| | 21 | S ₂₁ | | N _{21,3} | N _{21,4} | N _{21,5} | | 22 | S ₂₂ | | N _{22,3} | N _{22,4} | N _{22,5} | | 23 | S ₂₃ | | N _{23,3} | N _{23,4} | N _{23,5} | | 24 | S ₂₄ | | N _{24,3} | N _{24,4} | N _{24,5} | | 25 | S ₂₅ | | N _{25,3} | N _{25,4} | N _{25,5} | | 26 | NA | | NA | NA | NA | | 27 | S ₂₇ | | N _{27,3} | N _{27,4} | N _{27,5} | | 28 | S ₂₈ | | N _{28,3} | N _{28,4} | N _{28,5} | # Problems with missing data | Year | Returns | Recruits | Age 3 | Age 4 | Age 5 | |------|-----------------|-----------------|-------------------|-------------------|-------------------| | 21 | S ₂₁ | NA | N _{21,3} | N _{21,4} | N _{21,5} | | 22 | S ₂₂ | NA | N _{22,3} | N _{22,4} | N _{22,5} | | 23 | S ₂₃ | NA | N _{23,3} | N _{23,4} | N _{23,5} | | 24 | S ₂₄ | R_{24} | N _{24,3} | N _{24,4} | N _{24,5} | | 25 | S ₂₅ | R ₂₅ | N _{25,3} | N _{25,4} | N _{25,5} | | 26 | NA | R ₂₆ | NA | NA | NA | | 27 | S ₂₇ | R ₂₇ | N _{27,3} | N _{27,4} | N _{27,5} | | 28 | S ₂₈ | R ₂₈ | N _{28,3} | N _{28,4} | N _{28,5} | ## Problems with missing data | Year | Returns | Recruits | Age 3 | Age 4 | Age 5 | |---------------|-----------------|-----------------|-------------------|-------------------|-------------------| | 21 | S ₂₁ | · · · | N _{21,3} | N _{21,4} | N _{21,5} | | 22 | S ₂₂ | ? | N _{22,3} | N _{22,4} | N _{22,5} | | 23 | S ₂₃ | ? | N _{23,3} | N _{23,4} | N _{23,5} | | 24 | S ₂₄ | R ₂₄ | N _{24,3} | N _{24,4} | N _{24,5} | | 25 | S ₂₅ | R ₂₅ | N _{25,3} | N _{25,4} | N _{25,5} | | 26 | | P 26 | ? | ? | ? | | 27 | S ₂₇ | R ₂₇ | N _{27,3} | N _{27,4} | N _{27,5} | | 28 | S ₂₈ | R ₂₈ | N _{28,3} | N _{28,4} | N _{28,5} | We just lost 4 pairs of data for our model! ## Problems with this approach - 1. Spawners often based on redd- or weir-count expansions - 2. Age-composition data are typically non-exhaustive and therefore imprecise - 3. Missing data cause problems - 4. Stock-Recruit models are meant to be process models, not observation models $$R_{y} = aS_{y}e^{-bS_{y}+w_{y}}$$ #### Observation model | Year | Spawners | Recruits | |------|-----------------------|----------| | 1 | S_1 | R_1 | | 2 | S_2 | R_2 | | 3 | S_3 | R_3 | | 4 | S_4 | R_4 | | 5 | S ₅ | R_5 | | 6 | S_6 | R_6 | | 7 | S ₇ | R_7 | | 8 | S ₈ | R_8 | Time-ordering is irrelevant; estimated R_t has no effect on any later S_t #### FRAMEWORK FOR ANALYSES ## Integrated population models - "The construction of a joint likelihood for the observed data . . . using all available data, in as raw a form as appropriate, in a single analysis." (Maunder & Punt 2013) - DO: Make model outputs match the data - DON'T: Pre-process data to match the model (ie, "doing statistics on statistics") - IPMs are hierarchical models with distinct process and observation submodels - IPMs have been used in marine fisheries & wildlife #### In other words... IPMs use the same procedure for both the fitting and projection phases Others use different procedures for the fitting and projection phases ## PROCESS MODELS ## Process model ## Spawner-recruit models ## Addressing stochasticity $Recruits_{t+k} = f(Spawners_t, Environment_t)$ Autocorrelated process $$e_t = \phi e_{t-1} + \varepsilon_t$$ Covariates (e.g., flow) $$e_t = \beta x_{t-h} + \varepsilon_t$$ ## Step 1: Create recruits | Year | Spawners | Recruits | Age 3 | Age 4 | Age 5 | |------|-------------------------|-------------------------|-------|-------|-------| | 1 | <i>S</i> ₁ — | \longrightarrow R_1 | | | | | 2 | S ₂ — | \rightarrow R_2 | | | | | 3 | S ₃ — | \rightarrow R_3 | | | | | 4 | S ₄ — | \longrightarrow R_4 | | | | | 5 | S ₅ — | \rightarrow R_5 | | | | | 6 | | | | | | | 7 | | | | | | | 8 | | | | | | ## Step 2: Project recruits-by-age Recruits-by-age = Total recruits * prop-by-age ## Step 2: Project recruits-by-age | Year | Spawners | Recruits | Age 3 | Age 4 | Age 5 | |------|------------------|-------------------|------------------|------------------|------------------| | 1 | S ₁ — | $\rightarrow R_1$ | | | | | 2 | | | $p_{3,1}$ | | | | 3 | | | | $p_{4,1}$ | | | 4 | | | N _{4,3} | | $p_{5,1}$ | | 5 | | | | N _{5,4} | | | 6 | | | | | N _{6,5} | | 7 | | | | | | | 8 | | | | | | # Step 2: Project recruits-by-age | Year | Spawners | Recruits | Age 3 | Age 4 | Age 5 | |------|-----------------------|----------|-------------------------|------------------|-------------------------| | 1 | S_1 | R_1 | | | | | 2 | S_2 | R_2 | | | | | 3 | <i>S</i> ₃ | R_3 | | | | | 4 | S_4 | R_4 | N _{4,3} | | | | 5 | S ₅ | R_5 | N _{5,3} | N _{5,4} | | | 6 | | | N _{6,3} | N _{6,4} | N _{6,5} | | 7 | | | N _{7,3} | N _{7,4} | N _{7,5} | | 8 | | | N _{8,3} | N _{8,4} | N _{8,5} | #### **OBSERVATION MODELS** #### Observation model Time or space #### Observation model Time or space ## Step 3: Estimate age composition ## Step 3: Estimate age composition | Year | Spawners | Recruits | Age 3 | Age 4 | Age 5 | |------|-----------------------|----------|------------------|------------------|------------------| | 1 | S_1 | R_1 | | | | | 2 | S_2 | R_2 | | | | | 3 | <i>S</i> ₃ | R_3 | | | | | 4 | S_4 | R_4 | N _{4,3} | | | | 5 | S ₅ | R_5 | N _{5,3} | N _{5,4} | | | 6 | S ₆ | < | N _{6,3} | N _{6,4} | N _{6,5} | | 7 | | | N _{7,3} | N _{7,4} | N _{7,5} | | 8 | | | N _{8,3} | N _{8,4} | N _{8,5} | ## Step 4: Calculate total spawners #### True spawners $Spawners_t = Returns_t - Harvest_t$ True spawners are difference between returns and harvest* #### Observed spawners $$log(Esc_t) = log(Spawners_t) + Error_t$$ Measured escapement is estimate of true spawners ### Applying the model to data - All data pooled for the entire watershed - 1) Escapement estimates - 2) Harvest estimates - 3) Age composition - Flow covariates summarized at Salem - 17 years (1999-2015)* ### FLOW COVARIATES ### Lagging presumed flow effects # Examples of lagged flow effects | Life stage | Description | Time period | Time lag | |------------|----------------------|-------------|--------------| | Prespawn | Min of 7-day mean | Nov-Mar | brood yr | | Prespawn | Median of 7-day mean | Nov-Mar | brood yr | | Prespawn | Max of 7-day mean | Nov-Mar | brood yr | | Rearing | Min of 7-day mean | Jul-Sep | brood yr + 1 | | | : | : | : | | 1+ smolt | Min of 7-day mean | Apr-Jun | brood yr + 1 | | : | : | : | : | | 2+ smolt | Min of 7-day mean | Feb-Apr | brood yr + 2 | ### Model estimation & evaluation - Parameters & states estimated via MCMC in JAGS* - Models ranked via Watanabe's AIC - Posterior summaries of median ± 95% credible interval ## **RESULTS** ### Model selection results - In general, Ricker models favored over Beverton-Holt - "Best" model had (-) flow effects for yearling smolts - Some evidence for (-) effects of prespawn flows ## Effect of spring flows #### Period of yearling outmigration 1 SD increase in flow ~25% decrease in R/S ## Time series of estimated spawners ## Time series of estimated R/S # Spawner-Recruit relationships 10 ### **Caveats** - Does not account for hatchery-born spawners, which means: - Underestimate of number of spawners - Overestimate of recruitment/spawner - Relatively short time series (17 years) ### In summary - Some evidence for negative flow effects during downstream & upstream migration - Convincing evidence of overcompensation - Lots of uncertainty in: - Data - Models - Parameters # QUESTIONS?