Development & application of an integrated population model for Chinook salmon

Mark Scheuerell

NOAA Northwest Fisheries Science Center

J. Tyrell Deweber

Oregon State University

Tom Friesen

Oregon Department of Fish and Wildlife

Acknowledgments

Model development

Eric Buhle (NMFS)
Jim Thorson (NMFS)

Willamette insights

Stephanie Burchfield (NMFS)
Diana Dishman (NMFS)
Anne Mullan (NMFS)
Jim Peterson (OSU)
Rich Piaskowski (USACE)

THE CLASSICAL APPROACH

Year	Returns	Recruits	Age a	Age <i>a</i> +1	Age <i>a</i> +2
У	S_y				

Year	Returns	Recruits	Age 3	Age 4	Age 5
1	S_1		N _{1,3}	N _{1,4}	N _{1,5}
2	S_2		N _{2,3}	N _{2,4}	N _{2,5}
3	<i>S</i> ₃		N _{3,3}	N _{3,4}	N _{3,5}
4	S_4		N _{4,3}	$N_{4,4}$	N _{4,5}
5	S ₅		N _{5,3}	N _{5,4}	N _{5,5}
6	S_6		N _{6,3}	N _{6,4}	N _{6,5}
7	S ₇		N _{7,3}	N _{7,4}	N _{7,5}
8	S ₈		N _{8,3}	N _{8,4}	N _{8,5}

Year	Returns	Recruits	Age 3	Age 4	Age 5
1	S_1	R_1	N _{1,3}	N _{1,4}	N _{1,5}
2	S_2		N _{2,3}	N _{2,4}	N _{2,5}
3	<i>S</i> ₃		N _{3,3}	N _{3,4}	N _{3,5}
4	S_4		N _{4,3}	$N_{4,4}$	N _{4,5}
5	S ₅		N _{5,3}	N _{5,4}	N _{5,5}
6	S_6		N _{6,3}	N _{6,4}	N _{6,5}
7	S ₇		N _{7,3}	N _{7,4}	N _{7,5}
8	S ₈		N _{8,3}	N _{8,4}	N _{8,5}

$$R_y = \sum_{a=3}^5 N_{y+a,a}$$

Year	Returns	Recruits	Age 3	Age 4	Age 5
21	S ₂₁	R ₂₁	N _{21,3}	N _{21,4}	N _{21,5}
22	S ₂₂	R_{22}	N _{22,3}	N _{22,4}	N _{22,5}
23	S ₂₃	R ₂₃	N _{23,3}	N _{23,4}	N _{23,5}
24	S ₂₄	R_{24}	N _{24,3}	N _{24,4}	N _{24,5}
25	S ₂₅	R ₂₅	N _{25,3}	N _{25,4}	N _{25,5}
26	S ₂₆		N _{26,3}	N _{26,4}	N _{26,5}
27	S ₂₇		N _{27,3}	N _{27,4}	N _{27,5}
28	S ₂₈		N _{28,3}	N _{28,4}	N _{28,5}

Year	Returns	Recruits	Age 3	Age 4	Age 5
1	S_1	R_1	N _{1,3}	N _{1,4}	N _{1,5}
2	S_2	R_2	N _{2,3}	N _{2,4}	N _{2,5}
3	S ₃	R_3	N _{3,3}	N _{3,4}	N _{3,5}
4	S ₄	R_4	N _{4,3}	$N_{4,4}$	N _{4,5}
5	S ₅	R_5	N _{5,3}	N _{5,4}	N _{5,5}
6	<i>S</i> ₆	R_6	N _{6,3}	N _{6,4}	N _{6,5}
\Downarrow	₩	₩	\Downarrow	\Downarrow	\Downarrow
t	S_t	R_t	N _{t,3}	$N_{t,4}$	$N_{t,5}$

Stock-recruit model

Problems with this approach

1. Spawners often based on redd- or weir-count expansions

Covariate measured with error

Year	Returns	Recruits	Age a	Age <i>a</i> +1	Age <i>a</i> +2
y	S_{y}				

$$\ln\left(\frac{R_y}{S_y}\right) = \ln a - \log x + e_y$$

Our predictor variable is measured with error!

Problems with this approach

- 1. Spawners often based on redd- or weir-count expansions
- 2. Age-composition data are typically non-exhaustive and therefore imprecise

Typical age expansion

fish sampled for age comp << total return!

Problems with this approach

- 1. Spawners often based on redd- or weir-count expansions
- 2. Age-composition data are typically non-exhaustive and therefore imprecise
- 3. Missing data cause problems

Problems with missing data

Year	Returns	Recruits	Age 3	Age 4	Age 5
21	S ₂₁		N _{21,3}	N _{21,4}	N _{21,5}
22	S ₂₂		N _{22,3}	N _{22,4}	N _{22,5}
23	S ₂₃		N _{23,3}	N _{23,4}	N _{23,5}
24	S ₂₄		N _{24,3}	N _{24,4}	N _{24,5}
25	S ₂₅		N _{25,3}	N _{25,4}	N _{25,5}
26	NA		NA	NA	NA
27	S ₂₇		N _{27,3}	N _{27,4}	N _{27,5}
28	S ₂₈		N _{28,3}	N _{28,4}	N _{28,5}

Problems with missing data

Year	Returns	Recruits	Age 3	Age 4	Age 5
21	S ₂₁	NA	N _{21,3}	N _{21,4}	N _{21,5}
22	S ₂₂	NA	N _{22,3}	N _{22,4}	N _{22,5}
23	S ₂₃	NA	N _{23,3}	N _{23,4}	N _{23,5}
24	S ₂₄	R_{24}	N _{24,3}	N _{24,4}	N _{24,5}
25	S ₂₅	R ₂₅	N _{25,3}	N _{25,4}	N _{25,5}
26	NA	R ₂₆	NA	NA	NA
27	S ₂₇	R ₂₇	N _{27,3}	N _{27,4}	N _{27,5}
28	S ₂₈	R ₂₈	N _{28,3}	N _{28,4}	N _{28,5}

Problems with missing data

Year	Returns	Recruits	Age 3	Age 4	Age 5
21	S ₂₁	· · ·	N _{21,3}	N _{21,4}	N _{21,5}
22	S ₂₂	?	N _{22,3}	N _{22,4}	N _{22,5}
23	S ₂₃	?	N _{23,3}	N _{23,4}	N _{23,5}
24	S ₂₄	R ₂₄	N _{24,3}	N _{24,4}	N _{24,5}
25	S ₂₅	R ₂₅	N _{25,3}	N _{25,4}	N _{25,5}
26		P 26	?	?	?
27	S ₂₇	R ₂₇	N _{27,3}	N _{27,4}	N _{27,5}
28	S ₂₈	R ₂₈	N _{28,3}	N _{28,4}	N _{28,5}

We just lost 4 pairs of data for our model!

Problems with this approach

- 1. Spawners often based on redd- or weir-count expansions
- 2. Age-composition data are typically non-exhaustive and therefore imprecise
- 3. Missing data cause problems
- 4. Stock-Recruit models are meant to be process models, not observation models

$$R_{y} = aS_{y}e^{-bS_{y}+w_{y}}$$

Observation model

Year	Spawners	Recruits
1	S_1	R_1
2	S_2	R_2
3	S_3	R_3
4	S_4	R_4
5	S ₅	R_5
6	S_6	R_6
7	S ₇	R_7
8	S ₈	R_8

Time-ordering is irrelevant; estimated R_t has no effect on any later S_t

FRAMEWORK FOR ANALYSES

Integrated population models

- "The construction of a joint likelihood for the observed data . . . using all available data, in as raw a form as appropriate, in a single analysis." (Maunder & Punt 2013)
- DO: Make model outputs match the data
- DON'T: Pre-process data to match the model (ie, "doing statistics on statistics")
- IPMs are hierarchical models with distinct process and observation submodels
- IPMs have been used in marine fisheries & wildlife

In other words...

IPMs use the same procedure for both the fitting and projection phases

Others use different procedures for the fitting and projection phases

PROCESS MODELS

Process model

Spawner-recruit models

Addressing stochasticity

 $Recruits_{t+k} = f(Spawners_t, Environment_t)$

Autocorrelated process

$$e_t = \phi e_{t-1} + \varepsilon_t$$

Covariates (e.g., flow)

$$e_t = \beta x_{t-h} + \varepsilon_t$$

Step 1: Create recruits

Year	Spawners	Recruits	Age 3	Age 4	Age 5
1	<i>S</i> ₁ —	\longrightarrow R_1			
2	S ₂ —	\rightarrow R_2			
3	S ₃ —	\rightarrow R_3			
4	S ₄ —	\longrightarrow R_4			
5	S ₅ —	\rightarrow R_5			
6					
7					
8					

Step 2: Project recruits-by-age

Recruits-by-age = Total recruits * prop-by-age

Step 2: Project recruits-by-age

Year	Spawners	Recruits	Age 3	Age 4	Age 5
1	S ₁ —	$\rightarrow R_1$			
2			$p_{3,1}$		
3				$p_{4,1}$	
4			N _{4,3}		$p_{5,1}$
5				N _{5,4}	
6					N _{6,5}
7					
8					

Step 2: Project recruits-by-age

Year	Spawners	Recruits	Age 3	Age 4	Age 5
1	S_1	R_1			
2	S_2	R_2			
3	<i>S</i> ₃	R_3			
4	S_4	R_4	N _{4,3}		
5	S ₅	R_5	N _{5,3}	N _{5,4}	
6			N _{6,3}	N _{6,4}	N _{6,5}
7			N _{7,3}	N _{7,4}	N _{7,5}
8			N _{8,3}	N _{8,4}	N _{8,5}

OBSERVATION MODELS

Observation model

Time or space

Observation model

Time or space

Step 3: Estimate age composition

Step 3: Estimate age composition

Year	Spawners	Recruits	Age 3	Age 4	Age 5
1	S_1	R_1			
2	S_2	R_2			
3	<i>S</i> ₃	R_3			
4	S_4	R_4	N _{4,3}		
5	S ₅	R_5	N _{5,3}	N _{5,4}	
6	S ₆	<	N _{6,3}	N _{6,4}	N _{6,5}
7			N _{7,3}	N _{7,4}	N _{7,5}
8			N _{8,3}	N _{8,4}	N _{8,5}

Step 4: Calculate total spawners

True spawners

 $Spawners_t = Returns_t - Harvest_t$

True spawners are difference between returns and harvest*

Observed spawners

$$log(Esc_t) = log(Spawners_t) + Error_t$$

Measured escapement is estimate of true spawners

Applying the model to data

- All data pooled for the entire watershed
 - 1) Escapement estimates
 - 2) Harvest estimates
 - 3) Age composition
- Flow covariates summarized at Salem
- 17 years (1999-2015)*

FLOW COVARIATES

Lagging presumed flow effects

Examples of lagged flow effects

Life stage	Description	Time period	Time lag
Prespawn	Min of 7-day mean	Nov-Mar	brood yr
Prespawn	Median of 7-day mean	Nov-Mar	brood yr
Prespawn	Max of 7-day mean	Nov-Mar	brood yr
Rearing	Min of 7-day mean	Jul-Sep	brood yr + 1
	:	:	:
1+ smolt	Min of 7-day mean	Apr-Jun	brood yr + 1
:	:	:	:
2+ smolt	Min of 7-day mean	Feb-Apr	brood yr + 2

Model estimation & evaluation

- Parameters & states estimated via MCMC in JAGS*
- Models ranked via Watanabe's AIC
- Posterior summaries of median ± 95% credible interval

RESULTS

Model selection results

- In general, Ricker models favored over Beverton-Holt
- "Best" model had (-) flow effects for yearling smolts
- Some evidence for (-) effects of prespawn flows

Effect of spring flows

Period of yearling outmigration

1 SD increase in flow

~25% decrease in R/S

Time series of estimated spawners

Time series of estimated R/S

Spawner-Recruit relationships

10

Caveats

- Does not account for hatchery-born spawners, which means:
 - Underestimate of number of spawners
 - Overestimate of recruitment/spawner
- Relatively short time series (17 years)

In summary

- Some evidence for negative flow effects during downstream & upstream migration
- Convincing evidence of overcompensation
- Lots of uncertainty in:
 - Data
 - Models
 - Parameters

QUESTIONS?